(2019.09.17 更新)

前回はmutate関数を使って列の追加や修正を行いました。
そして最後に以下のコメントで終了しました。
mutate関数を使うと「FIMの合計点」とかだけでなく、年齢を「年代ごとに分類する」だったり、ある評価の「カットオフ値以上とそれ以下」に分けた列をExcelを使わずに作成することができます。
【2-2】Rのmutate関数を使って列の追加や修正を行うより)

今回は連続変数を条件に応じて複数のカテゴリーに変換していきます。

Rではいくつか方法があるのですが、今回はifelse関数、case_when関数、cut関数を紹介します。


今回使う架空のデータは年齢、性別、病名が入っています。
下のコードをまとめてスクリプトにコピペして実行してください。
library(tidyverse)
set.seed(1) 年齢 <- floor(rnorm(100,60,20)) 性別 <- sample(c("男性","女性"),100,replace = TRUE) 病名 <- sample(c("脳梗塞", "脳出血", "骨折", "靭帯損傷","心筋梗塞"), 100, replace = TRUE) data <- data.frame(年齢,性別,病名) head(data)
スクリーンショット 2019-02-10 22.48.49



今回は%>%やmutate関数を使って作業します。
これらの使い方に不安がある場合は前回の記事をご参照ください



1.ifelse関数をつかって分類する

条件から2つに分類する場合

ifelse関数は条件からTRUEとFALSEの2つに分けることができます。

ifelse(条件TRUEの場合FALSEの場合)



まず例としてdata_20という変数名に以下のように分類していきます。
・20歳未満を「未成年」、20歳以上を「成人」
・性別の男性を「male」、女性を「female」

data_20 <- data %>% 
  mutate(成人 = ifelse(.$年齢 < 20 , "未成年", "成人")) %>% 
  mutate(性別 = ifelse(.$性別 == "男性", "male", "female"))
head(data_成人)

スクリーンショット 2019-02-11 0.44.03

スクリーンショット 2019-02-11 0.46.48



条件から3つ以上分類する場合

3つ以上分類するはifelse関数のFALSEにifelseを入れ込みます。

ifelse(条件, TRUE, ifelse(条件2, TRUE, ifelse(条件3, TRUE, FALSE)))

このような形を「入れ子」と呼ぶそうです。繰り返せばいくらでも条件を増やすことができます。


今度は「年代」という変数名で20歳ごとに区切ってみます。
20歳未満なら「0〜」、
そうでなければ40歳未満なら「20〜」
そうでなければ60歳未満なら「40〜」・・・

上のイメージをコードにするとこうなります。

data_age <- data %>% 
  mutate(年代 = ifelse(.$年齢 < 20,"0〜", 
                      		ifelse(.$年齢 <40 ,"20〜", 
                        		ifelse(.$年齢 < 60,"40〜",
                        			ifelse(.$年齢 < 80, "60〜",
                        				ifelse(.$年齢 < 100, "80〜", "100〜")))))) %>% 
  mutate(年代 = factor(.$年代, levels = c("0〜", "20〜", "40〜", "60〜", "80〜", "100〜"), ordered = TRUE))
head(data_age)
スクリーンショット 2019-02-12 21.22.24

 mutate(年代 = factor(.$年代, levels = c("0〜", "20〜", "40〜", "60〜", "80〜", "100〜"), ordered = TRUE)の部分はfactorの順番を並べ替えています。

factorは50音順に並ぶので、もしこれをしなかったらグラフなど作る時に「0〜, 100〜, 20〜・・・」と100歳以上の場所がずれてしまいます。それを修正するためにlevels = でfactorの並べ替えをしています。
参照:【1-10】Rでよく使われる型について説明します。


個人的に感じる「ifelse関数+入れ子」のメリットは「他の関数を覚えなくていい」で、デメリットは終わりの))))))))の数が多すぎて間違えやすく、エラーに悩まされることです(笑)



2.case_when関数を使って分類する

3つ以上の分類で入れ子構造対策で慣れるとわかりやすいのがcase_when関数かもしれません。

case_when(条件A ~ 結果A, 条件B ~ 結果B, 条件C ~ 結果C)

今回は0歳以上 かつ 20歳未満といったように「かつ」が入る時は & を使います

年齢が0歳以上   かつ 年齢が20歳未満 を「0〜」
年齢が20歳以上 かつ 年齢が40歳未満 を「20〜」
年齢が40歳以上 かつ 年齢が60歳未満 を「60〜」・・・

上のイメージをコードにするとこうなります。

data_age <- data %>% 
  mutate(年代 = case_when(
    .$年齢 >= 0  & .$年齢 <20 ~ "0〜",
    .$年齢 >= 20 & .$年齢 <40 ~ "20〜",
    .$年齢 >= 40 & .$年齢 <60 ~ "40〜",
    .$年齢 >= 60 & .$年齢 <80 ~ "60〜",
    .$年齢 >= 80 & .$年齢 <100 ~ "80〜",
    .$年齢 >= 100 ~ "100〜")) %>% 
  mutate(年代 = factor(.$年代, levels = c("0〜", "20〜", "40〜", "60〜", "80〜", "100〜"), ordered = TRUE))

head(data_age)
スクリーンショット 2019-02-12 23.58.42


入れ子よりも( )の数が少ないのがありがたいところです。


数値でなくカテゴリーを条件で更に分類する場合

上記の場合は数値でしたが次のような場合はどうでしょう?

最初に行ったdata_20という変数名に以下のように分類していきます。
・成人という変数名で20歳未満を「未成年」、20歳以上を「成人」とする
・性別の男性を「male」、女性を「female」に変更
・疾患分類という変数名で、骨折・靭帯損傷を「運動器疾患」、脳梗塞・脳出血を「脳血管疾患」、心筋梗塞を「心疾患」とする

data_age <- data %>% 
  mutate(年代 = case_when(
    .$年齢 < 20 ~ "未成年",
    .$年齢 <= 20 ~ "成人")) %>% 
  mutate(性別 = case_when(
    .$性別 == "男性" ~ "male",
    .$性別 == "女性" ~ "female")) %>%
  mutate(疾患分類 = case_when(
    .$病名 %in% c("骨折", "靭帯損傷") ~ "運動器疾患",
    .$病名 %in% c("脳梗塞", "脳出血") ~ "脳血管疾患",
    .$病名 %in% "心筋梗塞" ~ "心疾患"))
head(data_age)
スクリーンショット 2019-02-13 0.58.43


ここで新たな ==%in% が出てきました。

スクリーンショット 2019-02-11 2.04.40
A == Bと A %in% Bは似ていますが、Bにあたる部分で==であれば1つしか入りません。
%in%は1つでも複数でも大丈夫です。

上記のコードで言うと .$性別 == "男性" ~ "male" の==は %in%に変えても大丈夫ですし、.$病名 %in% "心筋梗塞" ~ "心疾患" の %in% は == に変えても大丈夫です。

しかし.$病名 %in% c("骨折", "靭帯損傷") ~ "運動器疾患" に関しては ==に変えるとエラーが出ます。

上記図は今回の記事だけでなく条件式を作る時に必要になる考え方です。


case_when関数のメリットは入れ子構造にならないことで、デメリットとしては2つに分類するならifelseの方がコードが短くなります。



その他を作る(2019.09.17追記)

Exploratoryというソフトを開発しているKan Nishidaさんのツイートでcase_whenの解説を見つけました。ExploratoryはRをベースにしたデータ分析のソフトです。Rはプログラムを勉強してからでしか使えないところがありますが、ExploratoryはRコマンダーのようにプログラムを使わずにデータ分析ができます。

すべての人にデータサイエンスを

最新のデータサイエンスでは、さまざまな種類のデータを扱うことができ、機械学習や統計アルゴリズムを使用して、深い統計の知識がなくてもデータに隠れているパターンや傾向を見つけることができます。しかし、それはデータサイエンティストとプログラマーに限られています。

Exploratoryは誰もが、プログラミングを必要とせずに、モダンで最先端のデータサイエンスのアルゴリズムに簡単にアクセスできるようにします。私たちは誰もが最新のテクノロジーにアクセスし、データを通じて世界をより深く理解していくべきだと強く信じています。
(https://exploratory.io/より)





Exploratoryのサイトでもcase_when紹介がありました。

 


もし運動器疾患脳血管疾患以外をその他にしたければ以下のようになります。
TRUEはここでは残り全部といった意味になります。
data_age <- data %>% 
  mutate(年代 = case_when(
    .$年齢 < 20 ~ "未成年",
    .$年齢 <= 20 ~ "成人")) %>% 
  mutate(性別 = case_when(
    .$性別 == "男性" ~ "male",
    .$性別 == "女性" ~ "female")) %>%
  mutate(疾患分類 = case_when(
    .$病名 %in% c("骨折", "靭帯損傷") ~ "運動器疾患",
    .$病名 %in% c("脳梗塞", "脳出血") ~ "脳血管疾患",
    TRUE ~ "その他"

勉強になりました!


3.cut関数を使って分類する


数値を分類するに限って言うとcut関数も使えます。
cut関数はコードはスッキリしますが、少しクセがあり、おまじないが必要です。

cut(目的の列,
      breaks = (下限, カットする数値, 上限),
      right = FALSE,
      include.lowest = TRUE,
      labels =c("カテゴリー毎の名前"))

スクリーンショット 2019-02-13 1.49.04


「10代・20代」などでは0〜19のような分け方をするので、right = FALSEが必要になります。
加えてinclude.lowest = TRUEを加えないと端の値を読み込まず<NA>とデータなしとみなされてしまいます。


これらをふまえると以下のコードになります。

 data_age <- data %>% 
  mutate(年代 = cut(.$年齢, 
                  breaks = c(0, 20, 40, 60, 80, 100, 120),
                  right = FALSE, 
                  include.lowest = TRUE,
                  labels = c("0〜", "20〜", "40〜", "60〜", "80〜", "100〜")))
head(data_age)
スクリーンショット 2019-02-13 1.51.09


cut関数を使えば細かい条件が必要にならない分、right = や include.lowest = を忘れないように注意が必要です。


補足.mutate関数の組み合わせについて

mutate関数を複数回行うにはいくつかの方法があります。

スクリーンショット 2019-02-16 19.31.02
(追記)2019/02/16更新
すみません。mutate関数では②の方法は使えませんでした。
②の方法は次で紹介するfilter関数で使うことができます。


本来は,でつなぐと1つの行で済むのですが、初心者だと、()や,の数がうまくあわなかったりします。プログラミングの上級者からは意見があるかもしれませんが、プログラミング未経験・初心者はまず自分の覚えやすいものから始めていいと思っています。



まとめ

今回は条件によって分類する方法についてifelse関数、case_when関数、cut関数を紹介しました。

それぞれに特徴がありますので、必要に応じて使い分けてください。

また今回は演算子(<, ==, %in%など)の紹介も行いました。

演算子はデータを集計するときに必要になりますのでまた紹介していきたいと思います。